Gradient-based iterative algorithms for generalized coupled Sylvester-conjugate matrix equations
نویسندگان
چکیده
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملFinite iterative algorithms for extended Sylvester-conjugate matrix equations
An iterative algorithm is presented for solving the extended Sylvester-conjugate matrix equation. By this iterativemethod, the solvability of thematrix equation can be determined automatically. When the matrix equation is consistent, a solution can be obtained within finite iteration steps for any initial values in the absence of round-off errors. The algorithm is also generalized to solve a mo...
متن کاملGradient Based Iterative Algorithm for Solving the Generalized Coupled Sylvester-transpose and Conjugate Matrix Equations over Reflexive (anti-reflexive) Matrices
Linear matrix equations play an important role in many areas, such as control theory, system theory, stability theory and some other fields of pure and applied mathematics. In the present paper, we consider the generalized coupled Sylvestertranspose and conjugate matrix equations Tν(X) = Fν , ν = 1, 2, . . . , N, where X = (X1, X2, . . . , Xp) is a group of unknown matrices and for ν = 1, 2, . ...
متن کاملAn Iterative Algorithm for the Generalized Reflexive Solutions of the Generalized Coupled Sylvester Matrix Equations
An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations AXB − CYD,EXF − GYH M,N , which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matrices X and Y . When the matrix equations are consistent, for any initial generalized reflexive matrix pair X1, Y1 , the generalized reflexive solutions can be obtained b...
متن کاملGradient based iterative algorithm for solving coupled matrix equations
This paper is concerned with iterative methods for solving a class of coupled matrix equations including the well-known coupled Markovian jump Lyapunov matrix equations as special cases. The proposed method is developed from an optimization point of view and contains the well-known Jacobi iteration, Gauss–Seidel iteration and some recently reported iterative algorithms by using the hierarchical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2018
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2017.12.011